Data Scientist Programming Syllabus Complete Road Map Part 2

 Data Scientist  Programming Syllabus Complete Road Map Part 2





4 Programming

One needs to have a good grasp of
programming concepts such as Data
structures and Algorithms. The
programming languages used are Python,
R, Java, C++ is also useful in some places
where performance is very important.


  Python:

            ◉  List
            ◉  Set
            ◉  Tuples
            ◉  Dictionary
            ◉  Function, etc.
                   ◎  NumPy
                   ◎  Pandas
                    Matplotlib/Seaborn, etc.
             ◉  R:
                   ◎  R Basics
             ◉   Vector
             ◉   List
             ◉   Data Frame
             ◉   Matrix
                   ◎  Array
                   ◎  Function, etc.
                   ◎  dplyr
                   ◎  ggplot2
                   ◎  Tidyr
                   ◎  Shiny, etc.
                   ◎  DataBase:
                   ◎  SQL
                   ◎  MongoDB
                   ◎  Web Scraping (Python | R)
                   ◎  Linux
                   ◎  Git                
                   ◎  Other:
                   ◎  Data Structure
                   ◎  Time Complexity


5 Machine Learning 


ML is one of the most vital parts of data
science and the hottest subject of research
among researchers so each year new
advancements are made in this. One at
least needs to understand basic algorithms
of Supervised and Unsupervised Learning.
There are multiple libraries available in
Python and R for implementing these
algorithms.

Machine Learning

 ◉ Introduction:

     ◎ How Model Work

     ◎ Basic Data Exploration

     ◎  First ML Model

     ◎  Model Validation

     ◎  Underfitting & Overfitting

     ◎  Random Forests (Python _| R)

     ◎  scikit-learn

◉  Intermediate:

     ◎ Handling Missing Values

     ◎ Handling Categorical Variables

      Pipelines

     ◎ Cross-Validation (R)

     ◎ XGBoost (Python | R)

     ◎ Data Leakage



6 Deep Learning 

 ◉   Artificial Neural Network

◉   Convolutional Neural Network

◉   Recurrent Neural Network

◉   TensorFlow

◉   Keras

◉   PyTorch

◉   A Single Neuron

◉   Deep Neural Network

◉   Stochastic Gradient Descent

◉   Overfitting and Underfitting

◉   Dropout Batch Normalization

◉   Binary Classification


7. Feature Engineering

◉  Baseline Model

◉  Categorical

◉  Feature Encoding

◉  Feature Selection


8.  Natural Language Processing


◉  Text Classification

  Word Vectors


9.  Data Visualization Tools


  Excel VBA

  BI (Business Intelligence):

  Tableau

  Power Bl

  Qlik View

  Qlik Sense


10. Deployment

The last part is doing the deployment.

Definitely, whether you are fresher or 5+

years of experience, or 10+ years of

experience, deployment is necessary.

Because deployment will definitely give

you a fact is that you worked a lot.


FOR PART 1




                     
                    

Comments

Popular posts from this blog

Websites To Learn Programming

GitHub repositories to improve your programming skills

What To Study For Cyber Security ( Ethical Hacking )